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Abstract — The objective of this paper is twofold. On the one 

hand showing that an equivalent electrical model can account 

appropriately and at the behavioural level, the physical 

phenomena involved in an electronic device; this is achieved by 

comparing the simulated response of the model with a measured 

response resulting from an actual prototype of the device under 

test. On the other hand, demonstrating the reliability of an 

optimization algorithm to estimate the parameters values of an 

equivalent electrical model using a succession of tests and 

adjustments so that the algorithm converges to and reaches the 

optimal solution. The optimization algorithm is a combination of 

two search methods: random and deterministic. In this paper, 

the optimization algorithm is described and results obtained 

from its application to a pyroelectric sensor equivalent electrical 

circuit model are presented and discussed. 
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I. INTRODUCTION 

Modeling and simulation becomes more and more 

important in different areas of the electronics industry. The 

accuracy of simulation results depends on the electronic 

devices models and their parameters. Therefore, the modeling 

of devices and the estimation of their parameters values is 

always one of the most important research directions in 

electronic technology. Furthermore, the reliability of 

electronic circuit design simulators depends substantially on 

the validity of the models which are implemented in the 

simulators and on the knowledge of the parameters which 

appear in the models. 

Different categories of devices models are studied and used 

but it is commonly known that “behavioral” or “empirical” 

models are simple and easy-to-use even if they present less 

accuracy [1]–[6]. This class of models is based on electrical 

equivalent circuits. Moreover, after the initial design phase of 

the equivalent model, the second phase is to determine the 

best values of the parameters constituting the model. This is 

achieved by using an appropriate method for this purpose. A 

semi-experimental approach to achieve this goal is by fitting 

the measured data obtained from a prototype device as closely 

as possible to the simulated data. The main component of this 

approach is an optimization algorithm. 

Optimization of equivalent electrical models in time 

domain using measurements is more and more used for 

solving different problems. However, it is well known that in 

an optimization algorithm for a realistic device, the objective 

function to be optimized usually combines conflicting goals 

[7], [8]. Therefore, it may have several local minima even 

very different from the global one. The purpose of this paper 

is to show how good results can be obtained when optimizing 

equivalent electrical models by combining two different 

algorithms and using time domain measurements. The chosen 

application case is an electrical equivalent model of 

pyroelectric sensors proposed by Cornelius et al. [9]. 

II. OPTIMIZATION ALGORITHM 

The principle of the method is described in Fig. 1. The first 

step is the design of an equivalent model of the device. The 

second step is simulation and optimization. For this, we use an 

electrical simulator for general purposes (SPICE like 

simulator). This simulator has been associated with an 

optimization algorithm specially developed and adapted to the 

problems of fitting parameters of equivalent electrical models 

(choice of the objective function, sensitivity to different 

parameters ... etc.). 

The study performed was relevant to find out the best way 

of coupling two different optimization algorithms in order to 

obtain the best results in detecting the optimal variables set 

inside the feasibility area (i.e. the initial area limits). The first 

algorithm used is based upon a random procedure. It has the 

ability to avoid to be trapped in local minima. The second one 

is a conjugate-gradient algorithm (the Steepest Descent) 

which completes the optimization when the global optimum 

zone is detected. For the two algorithms, an objective function 

is used. This function estimates numerically the correlation 

between the simulated response of the equivalent electrical 

model and measurement. 

The objective function chosen for our application is defined 

as follows [10] 
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Fig. 1. Model parameters estimation methodology. 

where xi and yi are the measured and the simulated data 

respectively, N is the maximum number of discrete data 

chosen for comparison, σxy is the covariance of the two 

signals, σx and σy are the standard deviations of the measured 

and simulated signals respectively. The random search 

algorithm is used as a first step in the search for an optimal 

solution. It is a preliminary procedure to locate a possible 

optimal area within the feasibility space. During this step, the 

values of the model parameters are obtained by a random 

selection within the values space initially fixed. Indeed, the 

user selects one of the statistical laws proposed by the 

algorithm (normal distribution, uniform distribution ... etc.) 

and the values of the parameters are randomly generated and 

tested. This way of obtaining the values of the model 

parameters allows the algorithm to avoid to be trapped in local 

minima. As second step we used the so-called “steepest 

descent” method [11]. This is a classic method that uses the 

gradient of an objective function to evaluate the direction that 

the search must take, inside the optimal zone, to reach the 

global optimum point. At each iteration, the derivatives of an 

objective function F(α) are calculated, where α is the set of 

designable parameters whose values may be modified during 

the optimization process. The primary reason for the use of 

derivatives is that at any point in the feasibility area, the 

negative gradient direction indicates the direction of the 

greatest rate of decrease of the objective function at this point. 

Furthermore, the numerical evaluation of the objective 

function derivatives is performed using a sensitivity analysis. 

The latter determines the numerical derivatives with the 

greatest possible precision. In “steepest descent” method, 

starting from an initial trial point α1, iterative moves towards 

the optimum point are accomplished according to the rule 

 αi+1 = αi + βi.pi (2) 

where 

 i
i i

p   = −∇ ∇
α α

α αF F( ) ( )  (3) 

i.e., pi is given by the negative of the normalized gradient 

vector at the present value of α  at the i
th

 iteration. The 

function ∇F is defined as 

 [∂F/∂α1, ∂F/∂α2, ..., ∂F/∂αk]t (4) 

The step length β i is obtained from an one-dimensional 

search along the pi direction. However, as for other gradient 

methods, its main drawback is related to its dependence on the 

starting point. For this reason, the “steepest descent” seems to 

be well-suited as second step algorithm to locate the optimum 

parameters starting from the values found with a “random 

search”. 

III. ELECTRICAL EQUIVALENT MODEL OF A PYROELECTRIC 

SENSOR 

A. Theoretical overview 

The evolution of the physical phenomena inside the sensor 

is as described by Hamilton et al. [12]. Fig. 2 shows a cross-

sectional representation of a typical pyroelectric sensor. The 

incident optical radiation generates heat in the absorption 

layer on the surface of the sensor. Furthermore, the metallic 

electrode is used for electric heating; this optional operation is 

used for calibration applications. The second metallic 

electrode is used for the recovery of the electric signal in the 

form of an electrical short-circuit current IP(t). This current is 

measured using a current-voltage converter. A substrate layer 

is often used to provide mechanical stability and acts as a heat 

sink to change the frequency response of the sensor. 

1)  Determination of the current response 

The determination of the current response IP(t) obtained 

from a pyroelectric sensor can be made based on the 

expressions established by Mopsik and DeReggi [13]. So if 

only the polarization P(x), expressed in terms of the depth x, is 

considered, it is shown that the current IP(t), measured per unit 

area of the sensor as a function of time t, is given by [9] 
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where C1 = λp/d and C2 = (λx - λε)/d. 
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Fig. 2. Cross-sectional representation of a pyroelectric sensor. 
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λx, λε and λp are the coefficient of thermal expansion and 

the temperature coefficients of dielectric constant and 

permanent polarization respectively, d is the thickness of the 

pyroelectric, and θ(x,t) is the temperature of the pyroelectric 

at x and t. For convenience, IP(t) and P(x) are normalized with 

respect to the mean polarization so that 
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where 

 G(x) = (C1 + C2) P'(x) – C2 (8) 

In this manner, the waveform of IP(t) is preserved in IP'(t). 

2)  Determination of the electrical equivalent model 

The determination of an equivalent electrical model of a 

pyroelectric sensor is based on some justified simplifying 

assumptions. First, it is assumed that the heat flow through the 

sensor is one-dimensional. This is justified by the large planar 

dimensions of heat sources compared to the thickness of the 

materials used. Then, each of the constituent layers of the 

pyroelectric sensor is characterized by a thermal resistance Rth 

and a thermal capacity Cth. Rth and Cth are determined by the 

thermal properties of the material and the width of the layer. 

The equivalent electrical model of the pyroelectric sensor is 

then established by using an electrical resistance Re and an 

electrical capacitance Ce representing Rth and Cth respectively 

[9], [14]. Furthermore, a thermal time constant τth for a layer 

of material is defined as follows 

 τth = RthCth (9) 

This thermal time constant is also related to the physical 

characteristics of the material such as 

 τth = Rth.Cth = (d/h)(ρgd) (10) 

where d is the thickness of the layer, ρ is the density of the 

material, g is the specific heat, and h is the thermal 

conductivity of the material. Similarly, the electrical 

equivalent of a layer has a time constant τe given by 

 τe= ReCe (11) 

It should be noted that for modeling purposes, a discrete 

element approximation is made. The propagation of the heat 

wave is imagined occurring through a succession of discrete 

elementary cells, i.e., the pyroelectric sensor is imagined to be 

cut, parallel to the surface, into a number of consecutive slices. 

If a layer of material is represented by N separate slices, then 

the width of each slice is N
-1

 of the total width of the layer. 

The thermal capacitance and thermal resistance can be treated 

similarly. Finally, the continuous integral of Eq. (7) is 

replaced by the discrete element summation approximation 
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B. Equivalent circuit design 

The phenomenon of the heat wave propagation in the 

sensor and the creation of an output current are represented by 

the equivalent circuit model of Fig. 3 [9]. 

The output signal obtained from the equivalent circuit is 

proportional to I’P(t) as defined by Eq. (12). The equivalent 

circuit model is constituted by a network of resistors and 

capacitors. The absorber layer is represented by a resistor-

capacitor combination (Ra, Ca) suitably arranged. This part of 

the model has as an input, a pulse voltage source with a total 

power contained in each pulse equivalent to that contained in 

each optical pulse from the actual laser source. The substrate 

layer is also composed of a resistor-capacitor combination (Rs, 

Cs) properly arranged. Pyroelectric layer is represented by a 

succession of cells (Rp, Cp) modeling each of the sub-layers 

resulting from the virtual division of the pyroelectric layer. 

The number of cells (Rp, Cp) is dependent on the 

smoothness of simulation that the user wishes. A compromise 

must be accepted because as the number of cells is important 

as the smoothness of simulated signal is much better and the 

overall simulation time is important. The voltage at the node 

between the resistances Rp is equivalent to the temperature θi 

in the discrete element model and the corresponding current 

through a capacitor Cp is proportional to dθi/dt. As the thermal 

resistance of the metallic electrode layers is insignificant, 

these layers are represented by single capacitors. 

IV. TIME DOMAIN MEASUREMENTS 

In order to get an electrical signal, image of the variation of 

the sensor temperature, we measure the voltage at the output 

of a charge–current converter (Fig. 4) [15]. The obtained 

output voltage V0 is independent from the capacity of the 

sensor and the connecting cables. 

The variation of the pyroelectric current, Ip(t), is given by 

Eq. (13). 
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Fig. 3. Electrical equivalent model used for simulating the pyroelectric sensor 

response. R and C are the electrical resistance and the electrical capacitance 

respectively. Subscript a, m, p and s refer to absorber, metal electrode, 

pyroelectric and substrate materials, respectively. 
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Where experimentally, Cn = (1nF, 10nF), Cp = 1nF, Rp = 

10
11

 Ω, Zd = 10
12

 Ω, Gn = 2x10
5
. Zd and Gn are the input 

impedance and the gain of the operational amplifier 

respectively. Taking into account the experimental values of 

the different components, the following equation is obtained 
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Λ is the pyroelectric coefficient, S is an one face surface of 

the pyroelectric material, ε is the absorption coefficient of the 

absorbing black layer and E is a measure of the energy 

contained in the laser pulse given by the maximum value of 

the response [15]–[16]. In these conditions, the response V0(t) 

is of exponential form decreasing according to time with 

respect to the thermal time constant τth. 

The experimental setup used to determine the temperature 

response is described in Fig. 5. A laser system of “YAG” type 

delivers 3W as a maximum radiant power at a wavelength 

equal to 532 nm. The beam is then focused at the entrance of a 

mechanical chopper. The focal distance is set to 50 mm. The 

chopping frequency is variable from 5 Hz to 22 Hz; this 

frequency is also the repetition rate of the laser pulses. The 

appropriate frequency is fixed manually, via an input/output 

interface, after different tests so to make it possible the sensor 

to return to a thermal state of balance. In fact, the hole on the 

mechanical chopper disk permits to obtain a pulse width T of 

about 4.75 ms; this value is less than the thermal time constant 

of the pyroelectric sensor tested in this study. 

A numerical oscilloscope records the experimental 

responses of the pyroelectric sensor on a computer by the 

means of a serial interface (RS232). A variable gain 

instrumentation amplifier is also used. The amplifier is an 

AD620 which input impedance is about 10
12

 Ω and the 

capacity Cn is equal to 1 nF. The tested sensor is made of the 

polyvinylidine fluoride (PVF2) as a pyroelectric material. The 

experimental temperature response of the tested pyroelectric 

sensor to a laser pulse width T of about 4.75 ms, for a material 

thickness of 9 µm, is given in Fig. 6 (black curve). For this 

sensor, we used a capacitor Cn = 1 nF and an input mean 

power of about 250 mW. 

V. OPTIMIZATION AND SIMULATION RESULTS 

The objective is to make a double-check: the suitability of 

the chosen model with the device under test and the reliability 

of the optimization process to converge and achieve optimal 

estimation of the model parameters values. The optimized 

model has to give an electrical signal the same as the one 

measured previously. To achieve these goals, we applied the 

optimization algorithm to the case study presented in section 4. 

Moreover, it must be noted that the optimization process 

requires predefining the maximum number of iterations and 

the minimum of the objective function to impose to the 

random search algorithm in order to continue optimizing by 

using the deterministic search. For the latter, the same 

parameters (maximum number of iterations and the minimum 

value of the objective function) must also be defined. 

A preliminary study was performed to have indicators on 

the control parameters of the optimization process. The results 

have shown that for the “random search”, a number of 

iterations of about 3500 is sufficient to reach an objective 

function ρ of the order of 0.90000. For the second algorithm 

and from the set of values found by the random search for a 

given optimization sequence, the number of iterations was set 

to 1000 and the objective function ρ was set to 0.99999. 

Furthermore, to obtain results for a relevant statistical analysis, 

we performed 1000 optimization processes for the 

measurement case study. Moreover, with regard to the 

processing of the 1000 optimization sequences results 

obtained, we performed the calculation of the mean values 

( x ), the standard deviations (σx) and the ratios (σx/ x ) 

expressed in percentage; where x represents the parameters Ra, 

Ca, Rp, Cp, Cm, Cs and Rs. 
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Fig. 4. Example of a charge – current converter circuit. 

Laser System 

Controlled 

Mechanical 

Chopper 

Optical 

focusing 

system 
Device Under 

Test :  

 

pyroelectric  

detector 

Personal 

computer 

Serial 

Interface 

Input/Output 

Card 

Charge-current 

converter 
Digital 

oscilloscope 

 
Fig. 5. Experimental setup used to measure the temperature equivalent signal 

of a pyroelectric sensor. 

It should be noted that, given the number of optimization 

processes studied (equal to 1000), the distribution of the 

obtained results is statistically assumed to be a “Normal 
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Distribution” type, i.e., a deviation of ±1σ around the mean 

value represents a space inside which the occurrence 

probability of the value called “true” is equal to 68%. A 

deviation of ±2σ is equivalent to 95% and ±3σ represents a 

probability of 99.7%. In addition, it is worth mentioning that 

the choice of the number of cells representing the layer of 

pyroelectric material is determined by the smoothness of the 

desired simulation. Indeed, always following the results of the 

preliminary study, a number of less than 10 cells did not allow 

obtaining an objective function “ρ” higher than 0.91732. The 

optimization process failed to converge to an optimal solution 

(i.e. failed to give an objective function ρ ≈ 0.99999). Indeed, 

the simulated signal tended to deviate extremely from the 

measured signal. Also, a number greater than 10 cells tended 

to increase the simulation time and do not significantly 

increase the correlation between the simulated and the 

measured signals. The analysis of the results obtained from 

the 1000 optimization sequences is summarized in Table I. In 

order to have more relevant evaluation indicators, we 

calculated the ratios σx/ x  expressed as a percentage (Table II). 

In addition, and in order to get a graphical idea of the model 

simulation result and compare it with the measured signal, we 

used the set of values that gave the highest objective function 

value; this set is called “best case” (Fig. 6). Thus, and from 

the overall results, the following comments can be formulated: 

 

• The equivalent electrical model accounts appropriately 

for the behavior of the device under test, i.e., the 

pyroelectric sensor. 

• The equivalent electrical model can be used to enrich the 

models library of any SPICE-like electrical simulation 

software for Computer Aided Design purposes. 

• The combined optimization algorithm has shown its 

ability to determine an optimal solution (set of optimal 

values) to obtain a simulated response highly correlated 

with the measured signal. 

 

 

Fig. 6. Results obtained for the 9 µm thickness PVF2 material sensor: a 

comparison between experimental and simulated waveforms. 

 

TABLE I 

 NUMERICAL RESULTS OBTAINED FOR EACH PARAMETER OF THE SENSOR MODEL. 

 Initial area limits Optimization results 

 Search 

 Min Max  Mean value             Standard deviation  Best case  

    x  at 1σx at 2σx at 3σx Parameter 

Ra [Ω] 1 500 11.337 0.133 0.266 0.399 11.471 

Ca [µF] 0.01 20 1.254 0.015 0.030 0.045 1.236 

Rp [MΩ] 1 100 7.286 0.127 0.254 0.381 7.139 

Cp [pF] 1 1000000 682.624 8.123 16.246 24.492 696 

Cm [nF] 1 1000000 13370.679 179.167 358.334 537.501 13185 

Rs [Ω] 1 1000 2.702 0.973 1.946 2.919 9.648 

Cs [pF] 1000 100000 3741.100 1173.658 2347.316 3520.974 9845 

       Objective function ρρρρ      0.98732 

TABLE II 

RATIOS σX/ x  CALCULATED FOR EACH PARAMETER OF THE MODEL USED AS INDICATORS OF OPTIMIZATION ALGORITHM PERFORMANCE. 

Parameter Mean value x  ±1σx/ x  [%] ±2σx/ x  [%] ±3σx/ x  [%] 

Ra [Ω] 11.337 1.173 2.346 3.519 

Ca [µF] 1.254 1.196 2.392 3.588 

Rp [MΩ] 7.286 1.739 3.478 5.217 

Cp [pF] 682.624 1.190 2.380 3.570 

Cm [nF] 13370.679 1.340 2.680 4.020 

Rs [Ω] 2.702 36.010 72.020 108.030 

Cs [pF] 3741.100 31.372 62.744 94.116 
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Furthermore, the analysis of the calculated values σx/ x  [%] 

of the various parameters (Ra, Ca, Rp, Cp, Cm, Cs and Rs) shows 

the following: 

 

• For parameters Ra, Ca, Rp, Cp and Cm, the results indicate 

that nearly at ±1σx (i.e. 68% probability of existence of the 

“true value”), the dispersion of values obtained after 1000 

optimization processes is 1.173%, 1.196%, 1.739%, 

1.190% and 1.340% of the average values R a, C a, R p, 

C p and C m respectively. At near ±2σx (i.e. 95% 

probability of existence of the true value), the dispersion 

of the values obtained is 2.346%, 2.392%, 3.478%, 

2.380% and 2.680% of the average values R a, C a, R p, 

C p and C m respectively. These results are very 

encouraging and widely acceptable given the 

experimentally accepted tolerance levels. This also means 

that the set of optimal values is within the uncertainty 

region defined by ±2σx with a probability of 95% and with 

a tolerance range from 2.346% to 3.478% (depending on 

parameters). These tolerances are practically very 

acceptable and the way to get them is consistent with 

methods of experimental data statistical analysis agreed to 

in the field of metrology. 

• For parameters Rs and Cs: the results indicate tolerances to 

near ±1σx, 36.010% and 31.372% respectively and near 

±2σx, 72.020% and 62.744% respectively. This indicates 

an almost complete insensitivity of the electrical 

equivalent model with respect to these parameters, and 

therefore the insensitivity of the mathematical function 

that goes with it as any part of an electrical circuit 

representing a physical effect is actually analyzed by any 

electrical simulator as a mathematical function. Although 

these elements represent physical phenomena, the results 

give the impression that the “substrate” layer has no effect 

on the behavioural pyroelectric sensor. A particular 

attention should be made to find the right solution to 

highlight this effect. 

VI. CONCLUSION 

A prospective study on models parameters estimation using 

time domain measurements and an optimization algorithm is 

presented. The combined optimization algorithm has been 

applied with success to a pyroelectric sensor electrical 

equivalent model and it has shown a very good ability to 

avoid to be trapped in local minima. The measurement used as 

an application example for the parameters values estimation 

was relevant to a PVF2 sensor with 9 µm thickness. The 

results obtained were encouraging both in terms of the 

optimized parameters values and the reliability of the method. 

The whole semi-experimental modeling method can be 

applied to other types of sensors and the validated models can 

be included in the libraries of electrical simulators for 

computer aided design purposes. 
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